Think – Pair – Share

- Continuous vs. inhomogeneous media:
 - Q1: First of all, as a refresher, what are the three main types of microwave interaction with media that we discussed last time?
 - Q2: What fourth interaction type is irrelevant for continuous media but becomes relevant in inhomogeneous media?
 - Q3: Would you describe the atmosphere as a continuous or an inhomogeneous medium for microwave remote sensing and why?
Importance of Understanding EM Wave Interactions with the Atmosphere

- In some applications, we want to use microwave data to measure properties of the atmosphere
 - E.g. rain rates, cloud cover, water vapor content, ozone, CO2
- In some applications, we want to measure properties of the earth surface and need to know how the atmosphere changes the signal
- For simplicity’s sake, we will assume that the atmosphere is a largely homogeneous continuous medium

Transmissivity of the Atmosphere

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Wavelength (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1000</td>
</tr>
<tr>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>1 GHz</td>
<td>30 cm</td>
</tr>
<tr>
<td>10 GHz</td>
<td>3 cm</td>
</tr>
<tr>
<td>100 GHz</td>
<td>3 mm</td>
</tr>
<tr>
<td>1 THz</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>10 THz</td>
<td>30 μm</td>
</tr>
<tr>
<td>100 THz</td>
<td>3 μm</td>
</tr>
<tr>
<td>1000 THz</td>
<td>0.3 μm</td>
</tr>
</tbody>
</table>

Propagation of Signal through Atmosphere Described by Radiative Transfer Theory

- Describes how radiation is altered as it travels through a homogeneous medium (here: the atmosphere)
- More specifically, describes intensity of radiation propagating a medium that simultaneously absorbs, emits, and scatters

Difference to propagation through lossy media (last lecture):
- We include microwave emission by the media itself
- This means: we include the fact that atmosphere is of high enough temperature (>200K) to emit significant microwave radiation
How does Radiative Transfer Theory Connect with Last Lecture?

- Last lecture we said:
 - Signals are reflected \((\rho)\), absorbed \((\alpha)\), or transmitted \((\Upsilon)\) through medium

- Change 1: Radiative transfer theory adds thermal emission of atmosphere itself to signal budget

- Change 2: Additional assumptions for low frequency microwave signals:
 - Homogeneous medium \(\rightarrow\) locally non-scattering \((\rho \approx 0)\) as aerosols are much smaller than wavelength
 - We also assume that medium is in thermal equilibrium \(\rightarrow\) medium is neither warming nor cooling when interacting with radiation \(\rightarrow\) Kirchhoff’s law applies (absorbed radiation equals emitted radiation: \(\alpha = \epsilon\))

- Change 3: Radiative Transfer Theory for higher frequency signals:
 - Scattering needs to be considered \((\rho \neq 0)\)

Main Question of Radiative Transfer Theory

- Given incident radiation intensity onto a slab atmosphere what is the emergent radiation on the other side?

- Intensity at arbitrary point \(s\) along path:
 - Instantaneous intensity at \(s\) = incident intensity (scaled by absorption) + accumulated emission over path (also scaled by absorption)

- Both emitted and incident radiation are subject to exponential decay due to absorption

Geometry of Radiative Transfer Theory for Passive Microwave Remote Sensing

- Arbitrary location along signal path is denoted by \(s’\)

- Incident radiation \(I_0(0)\) defined at \(s = 0\)

- At sensor radiation \(I_s(s)\) defined at sensor location

- \(\tau(s', s)\) is absorption over path from \(s’\) to \(s\)
The Radiative Transfer Equation

- We already know the atmospheric emission at point s':
 \[I'(s') \]

- As we are interested in integrative effects over a path length, we define optical depth or opacity $\tau'(s', s)$ as absorption over a path
 \[\tau'(s', s) = \int_{s}^{s'} k'(s'') \, ds'' \]

- Opacity acts exponentially resulting in the radiative transfer equation
 \[I(s) = I(0) \cdot \exp\left(-\tau'(0, s)\right) + \int_{0}^{s} a'(s'') \cdot \left[b_0 F'(s'') \cdot \exp\left(-\tau'(s'', s)\right)\right] \, ds'' \]
The Radiative Transfer Equation (cont.)

- Conversion to Microwave Brightness Temperature: Radiative transfer equation is usually presented in terms of brightness temperatures
 \[I_f = \frac{2 \pi \lambda^2}{c^2} T_b(f') \]

- If also total absorption \(\exp \left(-\tau_f(0,s) \right) \) is replaced by \(T = \exp \left(-\tau_f(0,s) \right) \) (transmissivity), radiative transfer function for fixed frequency becomes:
 \[T_b = T_{100} F + \int_0^L k(x') \cdot T(x') \exp \left(-\tau_f(x',s) \right) dx' \]
 with real atmospheric temperature \(T(x') \) at \(x' \), atmospheric transmissity \(\tau_f \), and brightness temperature of background \(T_{100} \).

Measuring Atmospheric Gases at their Absorption/Emission Lines

![Atmospheric Absorption Spectrum](image)

- Individual atmospheric molecules have distinct narrow absorption lines → gas concentration from measuring emission at absorption lines

Example: Measuring Rain Rates from Microwave Emissions at Absorption Bands

- Measurements at 10.7GHz and 85GHz
- Sensor: TRMM (Tropical Rainfall Measuring Mission)
- Example: Typhoon Dan approaching China in Oct. 99

![Example Image](image)
Example: Global Precipitation Measurement (GPM) Mission

Faraday Rotation – Interaction of Microwave Signals with the Ionosphere

- In Ionosphere, ionization of atmospheric molecules by high-energy solar irradiance → charged medium
- Michael Faraday (1791 – 1867): In the presence of external magnetic field (geomagnetic field) polarized EM signals experience rotation of polarization vector (Faraday Rotation) when traveling through charged media

\[\Omega = \frac{K}{r} \text{azimuth} \times TEC \]

Transmitted signal → Ionosphere → Signal at ground level

- Faraday rotation can reach up to ~25º in L-band (~25cm) and can pose severe limitations for spaceborne remote sensing in P-band (~65cm)

Mapping Ionospheric TEC using Radar Observations

- We can exploit the relationship on the previous slide to perform global mapping of ionospheric TEC from radar observations
 - Here: Spaceborne L-band SAR data from the ALOS PALSAR mission are used

\[\text{TEC} = \frac{W}{2 \pi f r} \text{sec} \cos \theta \]

Magnetic field intensity & angle with observation direction

10º-30º geomag.
• Look at the unusual pattern in this passive microwave image acquired by NASA’s SMAP sensor:
 – This “horseshoe” pattern in the brightness temperature appeared after a 2015 flooding event in Texas and Mississippi.
 – **Q1:** What may be the cause of the lower microwave emissivity (blue)?

(Another) Think – Pair – Share

• Describe what you see: Active vs Passive microwave image of Greenland
 – The images to the left are passive (top) and active (bottom) microwave data acquired by SMAP (L-band; H polarization)
 – **Q2:** Interpret what you see and provide a physical explanation for observed patterns.

From Radiative Transfer Function to Scattering Theory

• In Radiative Transfer Theory:
 – dielectric properties in medium vary smoothly

• In Scattering Theory:
 – Interaction at boundaries between media with very different dielectric properties

We furthermore distinguish two scattering cases:

• If spatial extent of scattering medium is large relative to signal wavelength
 → Scattering from Surfaces

• If spatial extent of scattering medium is similar in scale or smaller than signal wavelength
 → Scattering from Objects
Scattering Intensity Varies with Spatial Angle

- Scattering in different spatial angles can be different
- Hence:
 - We describe scattering as an angle dependent variable
 - We calculate scattering power per unit solid angle (solid angle = steradian = Ω)
 - Steradian is the volumetric equivalent of the radian

Quantifying Scattering Effectiveness

- Effectiveness of scatterer can be quantified by scattering cross-section \(\sigma \):
 \[
 \sigma(\theta) = \frac{\text{Scattered power per unit solid angle into direction } \theta}{\text{Intensity of original incident plane wave}} \text{ [WΩ}^{-1}\text{]}
 \]
- Note: \(\sigma(\theta) \) has dimension \(m^2 \)
- In active microwave remote sensing: interest in what is scattered back to sensor → backscattering cross-section or radar cross-section (RCS)
 \[
 \sigma = \frac{I_{\text{received}}}{I_{\text{incident}}} \frac{\lambda R^2}{4\pi} \text{ [m}^2\text{]}
 \]
 for sensor at some distance \(R \) from the scattering interface

Parameters Influencing RCS

- Sensor Parameters
 - wavelength (e.g., penetration through canopy)
 - polarization
 - look angle
 - resolution (texture)
- Scene Parameters
 - surface roughness
 - local slope and orientation (∈ geomorphology)
 - scatterer density, e.g., biomass, leaf density
 - 3-D distribution of scatterers
 - dielectric properties \(\varepsilon_r \) of scattering material
 - soil moisture
 - vegetation status
For Some Simple Targets the RCS can be Mathematically Derived

- Example: Corner Reflectors

$$RCS = \frac{4\pi c^2}{3\lambda^2}$$

Table:

<table>
<thead>
<tr>
<th>RCS at C-band ((\lambda = 6.05 cm))</th>
<th>28.49 dB</th>
<th>23.69 dB</th>
</tr>
</thead>
</table>

How to Convert \(\sigma\) to \(\sigma_0\) and why One would do such a Thing

- RCS (\(\sigma\)) has one major disadvantage: For distributed targets, \(\sigma\) depends on size of measurement area (resolution) as seen by its unit \([m^2]\)

- To compare data from different instruments we need to normalize \(\sigma\) by the actual geometric area \(A\) of the ground surface

\[\sigma_0 = \frac{\sigma}{A} \]

\(\sigma_0\) is called sigma naught or normalized radar cross-section (NSCR) and is unitless

Sigma Naught can be Converted to other useful Brightness Measures

Alternative Brightness Measures

- Radar brightness: \(P(\theta)\)
- \(\sigma^0(\theta)\)
- Defined in image plane
- Quantity seen in the SAR image (antenna patterns neglected)

- Gamma Naught: \(\gamma(\theta)\)
- \(\sigma^0(\theta)\)
- Equally sampled variable for Lambertian scatterers (e.g., rainforest): \(\gamma^0 = \pi \sigma^0(\theta)\)
Scientists are generally interested in quantitative measures that are referring to the ground σ_0.

For system design, values are preferred that are independent from the terrain covered β_0.

For calibration purposes, values are preferred that are equally spaced γ_0.

How Target Size Matters in Determining RCS of Single Scatterer

Scattering governed by size of target relative to signal wavelength λ.

Three regimes get distinguished (figure uses spherical scatterer as example):

- Rayleigh scattering (after Lord Rayleigh):
 - Target size: $0.1 \lambda < 2\pi r < 10 \lambda$
 - Example: Scattering of radar signal on atmospheric water droplets
 - Forward scattering dominant (\approx RCS small)
 - RCS drops off with $1/r^4$

- Mie Scattering (after Gustav Mie):
 - Target size: $0.1 \lambda < 2\pi r < 10 \lambda$
 - Scattering intensity varies due to interference of signals scattered at different spots on target
 - Scattering very sensitive to small changes in $2\pi r$

- Optical scattering:
 - Target much smaller than λ ($2\pi r \ll \lambda$ by at least factor 10)
 - Example: Scattering of radar signal on atmospheric water droplets
 - Forward scattering dominant (\approx RCS small)
 - RCS drops off with $1/r^4$

Most Important Microwave Scattering Mechanisms
Definition of a Volume and Distinction from Homogeneous Media

- Composition of 3-D randomly distributed discrete scatterers
- Connection to previously discussed Homogeneous Media:
 - Scatters large enough to add scattering component
 - If density of scatterers is high and size of scatterers is low: Volume becomes homogeneous medium
 - True volumes scatter equally in all directions
- Volumes can be modeled using Radiative Transfer theory but scattering component needs to be included!

Interactions with volumes:

RCS of Scattering from a Volume

- **Assumptions:**
 - RCS of one scattering element is σ and there are N_0 scatterers.
 - Assume the extinction coefficient of the volume is κ.
 - Volume has a thickness of h causing a path length of $h\sec\theta$ (θ is incidence angle).
 - Total opacity of the layer is then $N_0 \kappa h \sec\theta$.
 - Radar illuminates area of A.

- **RCS σ_{vol}:**
 \[
 \sigma_{\text{vol}}(\theta) = N_0 \kappa \int_0^h N_0 \kappa \exp(-2 \kappa h \sec\theta) \, dz \quad [\text{m}^2]
 \]

- **NRCS σ_{NRCS}:**
 \[
 \sigma_{\text{NRCS}}(\theta) = \int_0^h N_0 \kappa \exp(-2 \kappa h \sec\theta) \, dz
 \]

Example: Dependence of Volume Scattering on Volume Thickness h

- C-band HH scattering from fresh water ice measured in laboratory experiment.
- Increase of SCR with ice thickness visible according to equation on previous slide.

SCATTERING FROM SMOOTH SURFACES
Scattering from Smooth Surfaces

- EM wave hitting interface at angle \(\theta_i \) is partly scattered and partly transmitted.

- For smooth surfaces, scattering forms coherent peak in specular direction \(\theta_r = \theta_i \).

- Part of signal enters medium and is slowed down causing redirection (refraction) according to Snell's Law:
 \[
 \frac{\sin \theta_i}{\sin \theta_r} = \frac{n_2}{n_1}
 \]

- Percentage of reflected energy is given by reflection coefficient \(R \) relating incident electric field \(E_i \) to reflected electric field \(E_r \):
 \[
 E_r = R \cdot E_i
 \]

Quantifying the Surface Reflection Coefficient

- \(R \) depends on relative orientation between electric field vector and surface.
- This means: \(R \) depends on the polarization of incident wave.

- For linear polarization two equations are needed to describe \(R_{VV} \) (vertical to surface in transmit and receive) and \(R_{HH} \) (horizontal to surface):

 \[
 R_{VV} = \frac{c \cdot \cos \theta_i - \sqrt{c^2 - \sin^2 \theta_i}}{c \cdot \cos \theta_i + \sqrt{c^2 - \sin^2 \theta_i}}
 \]

 \[
 R_{HH} = \frac{\cos \theta_i - \sqrt{\cos^2 \theta_i - 1}}{\cos \theta_i + \sqrt{\cos^2 \theta_i - 1}}
 \]

 \(R_{HV} = R_{VH} = 0 \)

 with \(c \) being complex dielectric constant.

- Fresnel reflection coefficients \(R_{VV} \) and \(R_{HH} \) are defined between 0 and 1.

Magnitude of Fresnel Reflection Coefficients

- One can see from both the Fresnel equations as well as the plot that \(R_{VV} = R_{HH} \) if \(\theta_i = 0^\circ \) and if \(\theta_i = 90^\circ \).
- \(R_{HH} \) is higher than \(R_{VV} \) → surface backscatter stronger in horizontal polarization.
Emission of Smooth Surfaces

- Emission ϵ can be conveniently derived from the scattering coefficient σ

- Utilizing Kirchoff’s law of $\kappa = \epsilon$ and assuming that transmissivity is zero:

 $$\epsilon_V(\theta) = 1 - |R_{VV}|$$

 $$\epsilon_H(\theta) = 1 - |R_{HH}|$$

- Apparent brightness temperature of surface is then:

 $$T_{B,V} = \epsilon_V(\theta) \cdot T$$

 $$T_{B,H} = \epsilon_H(\theta) \cdot T$$

 with T being the physical temperature of the surface

SCATTERING FROM EDGES AND CORNERS

Scattering on Edges and Corners

- If σ of both scattering surfaces is identical:
 - Scattering coefficient in HH: R_{HH}
 - Scattering coefficient in VV: R_{VV} $\exp(j\phi)$ with R_{VV} from Slide 32 and ϕ being a potential material dependent phase shift relative to the HH signal

 - Double-bounce scattering higher in horizontal (R_{HH}) than in vertical polarization (R_{VV})

 - $R_{HH} = R_{VV} = 0$
SCATTERING FROM ROUGH SURFACES

Types of Scattering from Rough Surfaces

- Scattering from randomly rough surfaces
 - Agricultural fields
 - Low vegetation
 - ...

- Scattering from periodically rough surfaces (called Bragg scattering)
 - Wind driven ocean surfaces
 - Certain regularly planted crop types

When is a Surface Rough? And how do Surfaces of Varying Roughness Scatter?

- Several criteria for roughness were developed that differ in strictness including the Fraunhofer criterion (a strict criterion) states:
 \[h_{\text{rough}} > \frac{\lambda}{2 \pi \cos \theta} \]
Schematic Analysis of Incidence Angle Dependence of Scattering

Wavelength and Surface Roughness

Scattering Processes: Bragg Scattering

Polarimetric Dependence of Bragg scattering:

- Horizontal polarization:
 \[R_{HH} = m \cdot \frac{\cos \theta \cos \phi - \sqrt{1 - m^2}}{\cos \theta + \sqrt{1 - m^2}} \]
- Vertical polarization:
 \[R_{VV} = m \cdot \frac{\cos \theta \cos \phi - \sqrt{1 - m^2}}{\cos \theta + \sqrt{1 - m^2}} \]
- Cross polarizations:
 \[R_{HV} = R_{VH} = 0 \]

... where \(e \) is the dielectric constant of the surface and \(m \) depends on surface roughness.
Polarimetric Dependence of Scattering Principles

Relative scattering strength by polarization:

- Pure Surface Scattering: $|S_{vv}| > |S_{hh}| > |S_{hv}|$ or $|S_{vh}|$
- Double Bounce Scattering: $|S_{hh}| > |S_{VV}| > |S_{HV}|$ or $|S_{VH}|$
- Volume Scattering: main source of S_{vv} and S_{vh}

What’s Next?

- From Passive to Active Microwave Sensors: Antennas, coherent sensing, and active systems!
- In preparation please read: