GEOS 657 – MICROWAVE REMOTE SENSING GRADUATE-LEVEL COURSE AT THE UNIVERSITY OF ALASKA FAIRBANKS

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 12: Concepts of InSAR and Its Application to Mapping Topography

UAF Course GEOS 657

THE GENERAL CONCEPTS OF INTERFEROMETRIC SAR (INSAR)

InSAR, a differential technique (or, interference & coherence is back ... again):

- InSAR analyzes the phase difference between two or more SAR images in order to map surface topography and monitor surface deformation.
 - Q1: We have to rely on phase differences as the phase of a single SAR image appears spatially random and does not allow access to information. Use the concept of interference to explain why that is.
 - **Q2**: We calculate phase differences between SAR images to extract information about surface topography and/or deformation. For this approach to be successful, we require the data to have sufficient coherence. From your knowledge about coherence, explain how coherence affects this process.

Phase signature of a single SAR image

... combines two or more complex-valued SAR images to derive more information about the imaged objects (compared to using a single image) by exploiting phase differences.

1

 \Rightarrow Images must differ in at least one aspect (= "baseline")

Т

baseline type	known as	applications: measurement of topography, DEMs	
$\Delta heta$	across-track		
$\Delta t = \mathrm{ms}$ to s	along-track	ocean currents, moving object detection, MT	
$\Delta t = \text{days}$	differential	glacier/ice fields/lava flows, SWE, hydrology	
$\Delta t = \text{days}$ to years	differential	subsidence, seismic events volcanic activities, crustal displacements	
$\Delta t = ms$ to years	coherence estimator	sea surface decorrelation times land cover classification	

- A radar transmits electromagnetic waves in the radar spectrum
- The following schematic sketch illustrates a propagating radar wave

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

ASF

Interferometric SAR Measures Phase Differences Between Repeated Observations to Measure Topography and Deformation

Source: Jet Propulsion Laboratory (JPL)

The Concept of Interferometric SAR (InSAR)

- UNIVERSITY OF ALASKA
- Calculation of Phase Difference between Pairs of Radar Remote Sensing Images acquired from similar vantage points

The Concept of Interferometric SAR (InSAR)

 Calculation of Phase Difference between Pairs of Radar Remote Sensing Images acquired from similar vantage points

Phase difference measurement (interferometric phase ϕ) is sensitive to:

Surface Topography $\phi(h, B, R, \theta)$

ASF

Example of a Spaceborne SAR Image

Cotopaxi Volcano, Ecuador

Example of the Corresponding Interferometric Phase Image

Cotopaxi Volcano, Ecuador

InSAR-derived DEM, Cotopaxi Volcano, Ecuador

• Phase in a pixel of a SAR image is sum of two components:

- 1. A **deterministic** component that is a function of the distance *R* between satellite and pixel on ground ($\psi(R)$)
- 2. A random phase change ψ_{scatt} caused by how all scattered signals from one pixel combine together
- Therefore, the phase signal measured in a SAR pixel is: $\psi = \psi(R) + \psi_{scatt}$

• As ψ_{scatt} is different for every pixel (every pixel contains different combination of scatterers), the **phase in a single SAR image** ψ **looks random**

How InSAR Really Works:

2. Form Interferogram to Remove Random Phase ψ_{scatt}

Example: Form Interferogram to Remove Random Phase Component ψ_{scatt}

3. Interferometric Phase ϕ as a Measurement of Angle

Note: Even for flat terrain: phase varies from near-range to far-range

• Example:

- ALOS PALSAR Interferogram near of Drift River Valley, AK (Baseline ~ 400m)

How InSAR Really Works:

5. Coherence: A Phase Quality Descriptor

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

ASF

How InSAR Really Works:

5. Coherence: A Phase Quality Descriptor

• We can calculate coherence using the following approach:

$$\hat{\gamma}[i,k]| = \frac{|\sum_{W} u_1[i,k] \cdot u_2^*[i,k]|}{\sqrt{\sum_{W} |u_1[i,k]|^2 \cdot \sum_{W} |u_2[i,k]|^2}}$$

W: small window centered around pixel [i, k]

- Coherence is an indicator for the level of noise in phase $\phi[i, k]$ of interferogram pixel [i, k]
- Coherence is defined between 0 (high phase noise) and 1 (low phase noise)
- Coherence can be converted to a phase standard deviation $\sigma_{\phi}[i, k]$

Coherence and Phase Noise - Theory

• How Coherence γ converts into phase standard deviation σ_{ϕ} depends on the number of looks N_L (how much we average)

University of Alaska Fairbanks

• This example compares interferometric phase quality and coherence side-by-side

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

INSAR FOR TOPOGRAPHIC MAPPING

- For sensitivity to topography: Images from two slightly different vantage points are required
- Sensitivity to topography depends on these acquisition parameters:
 - The separation of the acquisition locations perpendicular to the sensor look direction B_{\perp}
 - The sensor's wavelength λ
 - The distance between satellite and ground R
 - The sensor look angle θ

University of Alaska Fairbanks

How to measure topographic height from the InSAR phase:

$$\phi_{topo} = \frac{4 \pi}{\lambda} \frac{B_{\perp}}{R \sin \theta} h$$

How well can we measure height:
$$\sigma_h = \frac{\lambda}{4\pi} \frac{R \sin \theta}{B_\perp} \cdot \sigma_\phi$$

example ALOS PALSAR: $\lambda \approx 25 \,\mathrm{cm}$

 $R \approx 800 \text{ km}$

$$\theta = 30^{\circ} \rightarrow \sin \theta = 0.5$$

baseline	height for 1 phase cycle (2 π)	
50 m	≈ 1000 m	
100 m	≈ 500 m	
200 m	≈ 250 m	

University of Alaska Fairbanka

Interferometric Sensitivity as a Function of Wavelength

COLLEGE OF NATURAL SCIENCE & MATHEMATICS University of Alaska Fasherake

- Example:
 - ALOS PALSAR Interferogram near of Drift River Valley, AK (Baseline ~ 400m)

A specific interferometric phase value matches several topographic height values!

University of Alaska Fairbanka

Phase Unwrapping: Find "Most Likely" Absolute Phase Given Measured Ambiguous Phase

• Phase Unwrapping algorithms find mathematical ways of describing that ...

... than this

Shuttle Radar Topography Mission

A Global 30 Meter Digital Elevation Model in 11 Days February 11 - 22, 2000

31

SRTM – A Dedicated Topographic Mapping Mission

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

ASF

SRTM – Deployment of Mast

SRTM Coverage

SRTM Example, Cotopaxi Volcano, Ecuador

Digital Elevation Model (DEM)

TanDEM-X - An X-Band Mission for Global Topographic Mapping

• Mission Goals:

- Acquisition of a global DEM according to HRTI-3 standard
- Generation of Local DEMs with HRTI-4 quality
- Demonstration of innovative bistatic imaging techniques and applications

TanDEM-X

DEM Vertical Accuracy

	Spatial Resolution	Absolute Vertical Accuracy (90%)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)
DTED-1	90 m x 90 m	< 30 m	< 20 m
DTED-2	30 m x 30 m	< 18 m	< 12 m
TanDEM-X	12 m x 12 m	< 10 m	< 2 m
Level-4	6 m x 6 m	< 5 m	< 0.8 m

Visualization of improved DEM quality:

TanDEM-X vs. SRTM DEMs

Global TanDEM-X DEM

Global TanDEM-X DEM

Absolute Height Error

Zink, Manfred, et al. "TanDEM-X mission status: the complete new topography of the Earth." 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016.

ASF

Repeat-Pass vs. Single-Pass Interferometry

University of Alaska Fairbanka

What's Next?

- This is what awaits next:
 - Thursday March 09 we do project concept lightning talks
 - Then ...

- Tuesday March 21: Guest Lecture Joe Morrison "Umbra Space"
- Thursday March 13: Midterm Exam

ASF

• **Next lecture** we will talk about SAR Interferometry (InSAR).

- In preparation for this lecture please read the following pages in Woodhouse (2006):
 - Pages 312-331: Radar Interferometry

