GEOS 657 – MICROWAVE REMOTE SENSING GRADUATE-LEVEL COURSE AT THE UNIVERSITY OF ALASKA FAIRBANKS

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 12: InSAR for Deformation Monitoring, Automatic Processing Services & Limitations of Traditional InSAR

UAF Course GEOS 657

InSAR Processing – Steps 1 – 7:

Find and Download Images, Co-Register & Form Interferogram

Example: Mt. Peulik volcano, Alaska

COLLEGE OF NATURAL SCIENCE & MATHEMATICS University of Alaska Fartherite

• Example:

- ERS-2 Interferogram of Mt. Peulik volcano, Alaska

COLLEGE OF NATURAL SCIENCE & MATHEMATICS University of Alaska Fairbanka

DIFFERENTIAL INSAR – A METHOD FOR CM-SCALE DEFORMATION MONITORING

- 1. If reliable DEM is available, use DEM to compensate for topography.
- **2.** Else, \geq **3** complex SAR images at times $t_1, t_2, ..., t_n$ are required:
 - Form several interferograms:

3. For singular displacement event: use $\phi_{n-m} \propto B_{\perp,n-m}$ to derive topography

Example of Topography Compensation

UNIVERSITY OF ALASKA

- Compensation using available DEM
- ALOS PALSAR data of Baja Earthquake, 2010

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

How well can we measure deformation?

- InSAR is capable of observing inflation and deflation of volcanoes
- Inflation and deflation is triggered by changes of magma pressure in magma chamber (see animation)
- These phenomena precede volcanic eruptions and are potentially interesting for predicting eruptive behavior

Interferometric Phase Interpretation

Example: Surface Deformation at Mt. Peulik, Alaska

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

Representation of Interferometric Phase

Representation of Interferometric Phase

The Westdahl Case

Interpretation of Interferometric Phase

• Phase Difference from A to B: -2π (one fringe)

• <u>Deformation</u>: B inflates 2.83 cm relative to A.

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

Dr. Z. Lu, USGS

Interferograms in Support of Emergency Management Example: 2023 M7.8 Turkey–Syria Earthquake

Modern SAR Sensors such as Sentinel-1 and the upcoming **NISAR** mission can provide InSAR data within 2-3 days of an event

Continent-Wide Deformation Mapping from InSAR Example: Antarctica

- First Antarctic-wide glacier velocity map in history
- Full coverage by merging data from a wide range of satellite systems
- Accuracy varies with number of multiple coverage per area and coherence

RADARSAT-1 - 2000 2012

Mouginot et al., "Mapping of Ice Motion in Antarctica Using Synthetic Aperture Radar Data", Remote Sensing, 4(9), pp 2753-2767,

University of Alaska Fairbanks

Sub-Milimeter Surface Analysis

Building Deformation in Berlin, Germany

Typical Applications of Differential InSAR

Application	Notes		
 Infrastructure (buildings; roads; levees) deformation 	X-band		
Sink holes	X-band		
Landslides	X- or C-band		
 Oil/gas extraction 			
 Glacier motion mapping 			
 Volcano monitoring 			
 Permafrost-related surface deformation 	C- or L-band	<u>e</u>	
 Soil moisture variation 	L-band	Sca	
 Co-seismic earthquake deformation 	L-band	atial	
 Post & inter-seismic deformation 	L-band	Spa	
 Ice sheet monitoring 	C- or L-band		

ASF

Think – Pair – Share

Picking the right data for your InSAR analysis:

- Okmok is a volcano in Alaska's Aleutian Chain.
- Since its last eruption in 2008, the volcano has been re-inflating at a rate of ~10cm/year
- <u>Activity</u>: Pick the most suitable interferogram for measuring this deformation. Motivate your answer!
 - a) L-band data; $\Delta t = 24$ days; June July
 - b) L-band data; $\Delta t = 48$ days; June August
 - c) L-band data; $\Delta t = 144$ days; July December
 - d) C-band data; $\Delta t = 24$ days; June July
 - e) C-band data; $\Delta t = 48$ days; June August
 - f) C-band data; $\Delta t = 144$ days; July December
- Please consider the expected coherence γ and phase noise σ_{ϕ} in your answer

Okmok Volcano, Alaska

TYPICAL INSAR PROCESSING WORKFLOW

- 1. Select and order InSAR-capable SAR data from a data server
- 2. Import SAR data into an InSAR processing system
- 3. Calculate spatial baseline & apply spectral (wavenumber) shift filtering (not discussed in the lectures applied automatically by most available tools)

4. Determine co-registration parameters:

- cross-correlate >100 image chips spread over image
- use over-sampling and interpolation to locate correlation peaks
- apply regression to parameterize co-registration (e.g. affine transform)

5. Co-register images:

- Resample slave image(s) to match master image
- Required accuracy: << 1/10 resolution element
- More on required co-registration accuracy on Slides 20 & 21

- 6. [Optional Orbit improvement: If precise orbit information is available.]
- 7. Interferogram formation: $I = u_1 \cdot u_2^*$; optional multi-looking may be applied.
- **8.** Flat Earth phase removal: Simulate and subtract phase trend due to the geometry changes from near range to far range.
- **9.** Coherence Calculation: Coherence is calculated as described in Lecture 12.
- **10.** For differential InSAR (d-InSAR): Using a DEM, simulate and subtract interferogram replicating topography-related phase.
- **11. Apply phase filter:** A phase filter is applied to reduce InSAR phase noise and reduce phase unwrapping complexity (see next section).
- **12.** Phase Unwrapping: Turns originally ambiguous interferometric phase into unambiguous absolute phase.
- **13. Geocoding and Terrain Correction:** Note that flat earth phase needs to be added before geocoding to obtain absolute phase.

Effects of Coregistration Errors on Coherence

• How accurately must the two SAR images be co-registered before interferogram formation?

University of Alaska Fairbanka

Coherence Reduction Caused by Image Mis-Registration

- Here a plot how coherence drops with pixel misregistration:
 - Assumption: Mis-registration is only cause of de-correlation
 - Mis-registration expressed in fractions of pixels

How to select a suitable image pair for successful InSAR processing

• Required conditions:

- Images from identical orbit direction (both ascending or both descending)
- Images with identical incidence angle and beam mode
- Images with identical resolution and wavelength (usually: same sensor)
- Images with same viewing geometry (same track/frame combination)

• Recommended conditions:

- For topographic mapping: Limited time separation between images (temporal baseline)
- For deformation mapping: Limited spatial separation of acquisition locations (spatial baseline)
- Images from similar seasons / growth / weather conditions

AUTOMATIC (INSAR) PROCESSING SERVICES

Why Is There a Need For Automatic SAR Processing Services?

- Processing Flows for Generating Value-Added Products Are Often Complicated
 - Difficult and heterogeneous data types and data formats
 - SAR data typically do not come geocoded and have strong geometric distortions
 - Strong noise effects require complex filtering approaches
 - InSAR processing is complicated and error prone
- Large Data Volume of SAR Requires Powerful Processing Machines
- SAR Processing Software is Often Not User Friendly

→Several automatic processing tools are in development to make SAR data more accessible especially to new users from the disaster monitoring communities

HyP3: On-demand processing service for analysis-ready SAR data

• Available to anyone at no direct cost

RTC

- Radiometric Terrain Correction
- Corrects geometric and radiometric distortions caused by the terrain

InSAR

- SAR Interferometry
- The phase measurements of 2 SAR images are differenced to detect & quantify surface motion

autoRIFT

• DAAC managed $L1 \rightarrow L2$ workflows

- Glacier velocity tracking
- Measures surface displacements between two SAR images
- Part of NASA MEaSUREs <u>ITS_LIVE</u> project

reported of Alaska Fairback

Franz J Mever, UAF

GEOS 657 Microwave RS - 29

UNIVERSITY OF ALASKA FALEBANKS

A demo on how to generate an SBAS InSAR Stack in Vertex and then Analyze the data using MintPy in OpenSARLab can be found here:

<u>https://youtu.be/tq8nZp</u> <u>sWK6k</u>

Creating Product Subscriptions over your AOI on HyP3

Example of a Sentinel-1 SAR Image Time Series:

- Mekong River Delta
- Time frame: 2019

LIMITATIONS OF CONVENTIONAL INSAR

Think – Pair – Share: Take 1

Phase Interpretation: Analyze the phase content of this interferogram

- <u>Activity 1</u>: What do the phase patterns in Area 1 represent?
 - a) Displacement phase most likely related to an earthquake
 - b) Topographic signal
 - c) Atmospheric delay
- <u>Activity 2</u>: What is the main phase contribution in Area 2?
 - a) Displacement phase most likely related to an earthquake
 - b) Topographic signal
 - c) Atmospheric delay

Spot the Deformation Signal

The interferogram shown here contains a deformation signal related to a M5.7 earthquake. Despite it's magnitude, the surface expression of this earthquake is rather small, making it very difficult to spot the location of the event against the noise background in the interferogram.

- <u>Activity</u>: Look at the four suggested locations above. Which of the four do you think shows the earthquake?
 - a) Area 1
 - b) Area 2
 - c) Area 3
 - d) Area 4

Recap of InSAR Acquisition Scenario

• Phase of an interferogram:

$$\phi = W\{\phi_{topo} + \phi_{defo} + \phi_{atmo} + \phi_{orbit} + \phi_{noise}\}$$

$$= W \left\{ \frac{4\pi}{\lambda} \frac{B_{\perp}}{R \cdot sin(\theta)} h + \frac{4\pi}{\lambda} v \cdot \Delta t + \phi_{atmo} + \phi_{orbit} + \phi_{noise} \right\}$$

$$(W: \text{wrapping operator} \to \phi: [-\pi, \pi[)$$

• Phase of a differential interferogram (after compensation of topography phase):

$$\Delta \phi = W \left\{ \frac{4\pi}{\lambda} \frac{B_{\perp}}{R \cdot sin(\theta)} h_{err} + \frac{4\pi}{\lambda} v \cdot \Delta t + \phi_{atmo} + \phi_{orbit} + \phi_{noise} \right\}$$

(where $h_{err} = h_{true} - h_{DEM}$ is a residual topography phase due to errors in the DEM)

- 1. Only sensitive to motion in sensor's line-of-sight \rightarrow does not provide 3D motion fields
- 2. Temporal baseline is limited, leading to limited sensitivity to very slow surface motion:
 - Limitation is due to temporal decorrelation, leading to increase of phase noise with time
- 3. Spatial baseline is limited, limiting number of interferograms that can be formed from a stack of SAR data [advanced topic not as relevant with sensors such as Sentinel-1 and NISAR]
- 4. Atmospheric phase patterns may mask signal of interest, limiting sensitivity of InSAR to very small motion (or topography) signals
- 5. Orbit errors may cause ramp-like phase distortions [usually small]

Limitations of InSAR:

1. Only Line-of-Sight Motion Sensitivity

 $\Delta R = \Delta y \sin \theta - \Delta z \cos \theta$

for ERS:

1 fringe (2 π) corresponds to

2.8 cm in R

3.0 cm in z (e.g. subsidence)

7.2 cm in y (motion)

only 1 dimension of 3-d motion accessible

no sensitivity to motion in x direction

COLLEGE OF NATURAL SCIENCE & MATHEMATICS

University of Alaska Fairbanka

Limitations of InSAR:

2. Temporal Signal Decorrelation

- Changes of the ground scattering properties are main source of signal decorrelation with time
 - Example: Airborne C-band SAR over vegetated environments

ASF

Examples of Coherence Change with Time Boreal Dry Climate

• **Example**: Delta Junction – L-band SAR (ALOS PALSAR)

Examples of Coherence Change with Time

Boreal Dry Climate

ASF

Examples of Coherence Change with Time Boreal Dry Climate

• Estimated Coherence Models – Delta Junction; L-band

LULC type	А	λ (1/yr)	φ	В	d (1/yr)	R ²
1. Woody Savannas	0.08	0.99	0.00	0.31	0.18	0.89
	± 0.01	± 0.01	±0.17	±0.01	± 0.02	
2. Open Shrublands	0.06	0.99	0.03	0.44	0.23	0.92
	± 0.01	± 0.02	±0.23	±0.01	± 0.02	
3. Urban & Croplands	0.03	1.01	0.00	0.25	0.26	0.80
	± 0.01	± 0.03	±0.47	±0.01	± 0.03	
4.Evergreen Forest	0.05	0.99	0.00	0.39	0.21	0.76
	± 0.01	± 0.03	±0.43	± 0.02	± 0.03	

– Coherence Model Characteristics:

$$\bar{\gamma}(t) = \mathbf{A} \cdot \cos(2\pi\lambda \cdot t + \phi) + \mathbf{B} \cdot \exp(-\mathbf{d} \cdot t)$$

- Different exponential decay parameters (d & B)
- Significant & similar periodic cycle λ for analyzed land covers
- Differences in amplitude A of periodic signal
- Periodicity λ closely one year \rightarrow near-seasonal signatures
- Good model fit (high R^2)

Example: Volcano Monitoring

 Often, caldera of active volcanoes is decorrelated due to constant change (snow and ice melt; ash fall; lahars; lava flows; ...).

• Consequence:

- Area with strongest signals inaccessible
- In modeling, shape of source model as well as horizontal location of source hard to define
- combination with GPS is advised

Decorrelation and Fringe Washing

Gorkha Earthquake, Nepal, April 2015

Decorrelation: phase essentially random

Fringe Washing Large strain: fringes closely spaced, difficult to unwrap

Can decrease coherence

InSAR Time Series Analysis is mitigating the impact of signal decorrelation

ASF

Limitations of InSAR:

4. Atmospheric Distortions

• Atmospheric propagation influence:

- Masks deformation signals in InSAR
- Increases data requirements and latency times for InSAR analyses

ASF

Limitations of InSAR:

Coquimbo Earthquake, Chile, April 2018, M6

Turbulent Troposphere:

Horizontal variation in refractive index, esp. in water vapor Variable across spatial scales Can mask small earthquake

Correction:

- Regional scale: weather model, GPS, etc.
- Small scale: filtering in space and time

Stratified troposphere Signal path decreases with elevation Phase correlated with topography

Correction: weather models, data-driven

Sentinel-1 Interferogram Courtesy SARVIEWS, ESA

COLLEGE OF NATURAL SCIENCE & MATHEMATICS University of Alaska Fastbacks

Examples of Turbulent Atmospheric Phase Distortions in InSAR Data

• 8 100x100 km interferograms showing atmospheric distortions [cm]

Courtesy: R. Hansen, TU Delft

ASF

ASF

Limitations of InSAR:

4. Atmospheric Distortions

ASF

• This is what awaits next:

- Thursday March 30: Lab on Interpreting InSAR data
- Tuesday April 04: Polarimetric SAR

