

		_
		_
		_
		_
		_
		_

_

_

-	

Polarimetric Scattering Matrix	UAF Alaska
In a quad-pol SAR, every pixel is represented by a matrix of four complex numbers,	
representing ratios of received and transmitted electric-field amplitudes:	
$[S] = \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} $ (scattering or Jones matrix)	
For (monostatic) SARs: $S_{III} = S_{III'}$ (reciprocity)	
$\begin{split} [S] = & \begin{pmatrix} S_{HH} & S_{HV} \\ S_{HV} & S_{VV} \end{pmatrix} \tag{Sinclair matrix} \end{split}$	
\Rightarrow 3 amplitudes + 2 independent phases per pixel	
	Franz J Meyer, UAF GEOS 657 Microwave RS - 10

Polarimetric Dependence of Scattering Principles				
	Relative scattering strength by polarization:			
Pure Surface Scatterin	g: $ S_{VV} > S_{HH} > S_{HV} \text{ or } S_{VH} $			
Double Bounce Scatte	• Double Bounce Scattering: $ S_{HH} > S_{VV} > S_{HV} \text{ or } S_{VH} $			
+ Volume Scattering: main source of $ S_{HV} $ and $ S_{VH} $				
Low Radar	Legend Brightness ([S]) High Radar Brightness ([S])			
		Franz J Meyer, UAF 157 Microwave RS - 16		

		_
		_
		_
		_
		_
		_

Polarimetric Signatures of Different Ty	pes of Agricultural C	rops
The structure of Crops/vegetation defines scattering power at different polarizations: – Voluminous leafy vegetation will scatter strongly in HV – Stemmy vegetation (e.g., corn) will dominate in HH – Bare fields and low vegetation stronger in VV		
Example: JPL UAVSAR image acquired by L-band radar showing three backscatter polarizations and the false-colored composites over an area in California's Central Valley covered by orchards and different crops. The strength of each polarized backscatter is shown, relatively suggesting how certain crops are relatively higher in one of the HH, HV, and VV polarizations.	17	
ASE	UNF SERVER AMARTINA	Franz J Meyer, UAF

Visual Interpretation – Color Composites

1

H-VV 2HV

_

